Como resolver uma integral definida

Autor: Robert Simon
Data De Criação: 22 Junho 2021
Data De Atualização: 16 Novembro 2024
Anonim
Integral de uma Função - Como Calcular uma Integral Definida.
Vídeo: Integral de uma Função - Como Calcular uma Integral Definida.

Contente

A solução para uma integral definida resulta na área entre a função integrada e o eixo x do plano de coordenadas cartesianas. Os limites inferiores e superiores do intervalo para o integrante representam os limites esquerdo e direito da área. Pode-se também utilizar integrais definidas em diversas aplicações, tais como: cálculo de volume, trabalho, energia e inércia. Mas primeiramente você deve aprender os princípios básicos de aplicação das integrais definidas.


Instruções

Solução para uma integral definida (cahiers pour la rentrée image by iMAGINE from Fotolia.com)
  1. Ajuste a integral, se o problema a der pra você. Se precisar achar a área da curva 3x^2 - 2x + 1, com intervalo entre 1 e 3 por exemplo, você terá que aplicar a integral naquele intervalo: int[(3x^2 - 2x + 1)dx] de 1 a 3.

  2. Utilize-se das regras básicas de integração para resolver a integral da mesma forma que resolveria uma integral indefinida, apenas não adicione a constante de integração. Como exemplo: int[(3x^2 - 2x + 1)dx] = x^3 - x^2 + x.

  3. Substitua o limite superior do intervalo de integração por x, no resultado da equação e, em seguida, simplifique. Por exemplo, trocando x por 3 na equação x^3 - x^2 + x resultará em 3^3 - 3^2 + 3 = 27 - 9 + 3 = 21.


  4. Troque x pelo limite inferior do intervalo no resultado da integral e, em seguida, simplifique. Por exemplo, coloque o 1 na equação x^3 - x^2 + x, o que resultará em 1^3 - 1^2 + 1 = 1

  5. Subtraia o limite inferior do limite superior para chegar ao resultado da integral definida. Por exemplo, 21 - 1 = 20.

Dicas

  • Para encontrar a área entre duas curvas, subtraia a equação pela curva inferior e pela curva superior e terá a integral definida como resultado da função.
  • Se a função é descontínua e a descontinuidade está no intervalo de integração, use a integral definida da primeira função do limite inferior para a descontinuidade e a integral definida da segunda função da descontinuidade para o limite superior. Junte os resultados e obtenha o resultado. Se a descontinuidade não estiver no intervalo de integração, utilize a integral definida apenas para a função que exista no intervalo.